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A B S T R A C T

Coronary artery disease is one of the leading causes of death in wordwide. There is growing evidence that
prostanoids are involved in the physiology and pathophysiology of the human coronary artery by controlling
vascular tone, remodelling of the vascular wall or angiogenesis. In this review, the production of prostanoids and
the expression of prostanoid receptors in human coronary artery in health or disease are described. In addition,
the interactions between sex hormones and prostanoids, their participations in the development of coronary
artery diseases have been addressed. Globally, most of the studies performed in human coronary artery
preparations have shown that prostacyclin (PGI2) has beneficial effects by inducing vasodilatation and
promoting angiogenesis while reverse effects are confirmed by thromboxane A2 (TxA2). More studies are
needed to determine the roles of the other prostanoids (PGE2, PGD2 and PGF2α) in vascular functions of the
human coronary artery. Finally, in addition to the in vitro data about the human coronary artery, myocardial
infarction induced by cyclooxygenase-2 (COX-2) inhibitor and the protective effects of aspirin after coronary
artery bypass surgery suggest that prostanoids are key mediators in coronary homeostasis.

1. Introduction

Coronary arteries play a critical role in the supply of blood flow to
the myocardium. When the plaque builds up inside the coronary artery,
blood flow is partially or totally blocked. This change is named by
atherosclerosis and it is the main common reason for coronary artery
disease (CAD). This disease has severe implications by decreasing the
supply of oxygen and nutrients to the myocardium and may result in
myocardial infarction [1]. Several endogenous factors are implicated in
the development or progression of CAD, among them prostanoids could
be important key elements because of their substantial involvements in
the physiology and pathophysiology of the coronary artery.

Prostanoid synthesis is initiated by arachidonic acid release from
phospholipids by the action of phospholipase A2 (PLA2) enzymes in the
cell membrane. Then arachidonic acid is converted to prostaglandin
(PG)H2 via cyclooxygenases (COX-1 and COX-2) enzymes. PGE2,
prostacyclin (PGI2), PGD2, PGF2α and thromboxane A2 (TxA2) are
formed from PGH2 via prostanoid synthase enzymes. The prostanoids
are involved in vascular homeostasis by regulating vascular wall
remodelling and muscular tone [2,3]. Basically, the vascular wall
produces mainly the vasodilator and antiplatelet prostanoid PGI2, while
blood components such as platelets release the vasoconstrictor and
proaggregant prostanoid TxA2. However, increasing evidences demon-
strate synthesis and roles for PGE2 in the cardiovascular system [3,4].

Interactions between the vascular wall and blood cells could be
maintained by the balance between detrimental and beneficial prosta-
noids in physiological conditions [5]. However, this balance in
prostanoid release is impaired in pathophysiological conditions such
as CAD. For this reason, the prostanoids could have important impacts
on the prevention or treatment of CAD. In fact, emerging evidence on
the impact of the prostanoids in coronary artery physiology is strongly
suggested by numerous clinical studies concerning both the beneficial
effects of aspirin administration in the post-operative period of
coronary artery bypass grafting (CABG) surgery [6] and the cardiovas-
cular side effects (such as myocardial infarction) induced by COX-2
inhibitors or NSAIDs (non-steroidal anti-inflammatory drugs) [7]. In
this review, we focused on the role of prostanoids in the regulation of
human coronary artery homeostasis (vascular tone and wall remodel-
ling) and their involvements in the development of CAD are addressed.

2. In vitro prostanoid synthesis and receptors in human coronary
artery cells

2.1. In healthy condition

In normal conditions without inflammatory stimuli, only COX-1 is
detectable by western blot and/or RT-PCR analysis in cultured human
coronary artery endothelial cells (HCAEC) [8,9] or smooth muscle cells
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(HCASMC) [10,11]. Respective synthase enzymes for PGI2, TxA2 or
PGE2 have been detected in HCAEC [9]. In addition, in isolated fresh
human coronary artery, the production of all major prostanoids (PGI2,
TxA2, PGD2, PGF2α, PGE2, PGE1) has been confirmed by radioimmu-
noassay [12]. Immunohistochemistry studies on human coronary artery
serial sections (obtained after autopsy) with anti-TxA2 synthase and
anti-PGI2 synthase antibodies have exhibited positive staining in several
types of cells including in endothelial cells, smooth muscle cells and
macrophages [12]. However, measurements of TxA2 stable metabolite
released by human coronary segments, with and without an intact
endothelium, have suggested the absence of TxA2 synthesis by the
endothelium [13]. Interestingly and paradoxically, one non-inflamma-
tory stimulus (oleanolic acid) was able to induce COX-2 expression via
mitogen activated protein kinase (MAPK) signalling pathways in HC-
ASMC. Oleanolic acid which is a triterpenoid derived from olive oil may
contribute to the cardio-protective effects of Mediterranean diet by
increasing PGI2 concentration after COX-2 induction [14].

The effects of prostanoids are dependent on specific prostanoid
receptors named DP1-2, EP1–4, FP, IP and TP which are preferentially
activated by PGD2, PGE2, PGF2α, PGI2 and TxA2, respectively [2]. One
study has shown that HCASMC express EP3, EP3-I, IP and TP mRNA
[15]. Expressions of the IP and TP receptor proteins were also detected
in HCASMC [16,17]. On the other hand, HCAEC expressed mRNA for
the IP, TP, all four EP receptors (EP1-4) and expressed the proteins for
the EP1, EP2 and EP3 receptors [15]. It was suggested that the protein
for EP4 receptor could not be synthesized, even though the mRNA of
EP4 was detected in HCAEC [18].

2.2. In inflammatory condition

Under inflammatory conditions, the production of prostanoids could
be modified in cultures of human coronary cells as in many other cells.
This effect is associated with the induction of COX-2 expression in
human coronary cell cultures subjected to inflammatory stimuli such as
interleukin-1beta (IL-1β), lipopolysaccharide (LPS), tumor necrosis
factor alpha (TNFα) in HCASMC [10] or HCAEC [9,19]. In most of
the cases, these inductions of COX-2 are associated with a specific
increase in the production of PGE2 or PGI2. Similarly, in HCAEC,
another inflammatory mediator, histamine, has been shown to stimu-
late the expression of COX-2 (mRNA and protein), microsomal pros-
taglandin E synthase-1 (mPGES-1) and PGI2 synthase (PGIS) mRNA
transcription. Consequently, in this study histamine augmented the
production of PGI2 and PGE2 via H1 receptor activation without
affecting TxA2 release [20].

Much evidence has shown that inflammation promotes atherogen-
esis and the associated thrombotic events. Incubation with inflamma-
tory cytokines such as IL-1β results in higher IL-6 and tissue factor
(procoagulant protein) productions in HCAEC as compared to human
umbilical vein endothelial cells (HUVEC) or dermal microvascular
endothelial cells. The greater susceptibility of HCAEC to inflammatory
cytokines might provide a greater risk of inflammation and/or coagula-
tion in coronary vessels [21]. Inhibition of PLA2 in HCAEC could block
the production of several inflammatory metabolites involved in the
pathophysiology of atherosclerosis such as PGE2 [22]. Similarly, the
anti-inflammatory role of ghrelin has been shown, this “hunger
hormone” is known to assist in tissue revascularization and to attenuate
endothelial cell damage in diabetes or atherosclerosis [23]. Pre-treat-
ment of HCAEC with ghrelin attenuated the increased COX-2 mRNA
expression induced by acute inflammation [15]. As well as in inflam-
matory conditions, HCAEC under hypoxia are able to induce neutrophil
chemotaxis. Such mechanism is mostly dependent of the increased
production of PGF2α [24].

C-reactive protein (CRP), a prototypic marker of inflammation, is
involved in the development of CAD. Jiao et al. have shown that CRP
significantly increased COX-1 and COX-2 levels in a time- and
concentration-dependent manner in HCAEC [8]. In contrast, other

group has indicated that CRP decreased PGI2 synthesis in HCAEC, an
effect possibly due to the inactivation of PGIS by nitration via inducible
nitric oxide synthase (iNOS) induction [25]. Another study performed
in porcine coronary artery suggested that CRP induced endothelial
dysfunction by impairing PGI2 production and involved in the devel-
opment of CAD [26].

3. Physiological effects of prostanoids in the human coronary
artery

3.1. Regulation of vascular tone by prostanoids in vitro

Prostanoids are implicated in the regulation of human vascular tone
by activating their specific receptors. When these receptors are
localized on the smooth muscle, classically the activation of IP, EP2,
EP4 or DP receptors by prostanoids induces vasodilatation, while the
activation of TP, EP1, EP3, or FP receptors is responsible for vasocon-
striction [2]. Control of vascular tone by prostanoids in human
coronary artery could be differently regulated depending on the
stimulus (agonist, hypoxia, bacterial peptide) or the patient character-
istics/pathology. In patients with diabetes mellitus, in vitro coronary
arteriolar dilatation induced by bradykinin was more potent when
compared to preparations derived from patients without this pathology.
This greater relaxation was dependent on prostanoids since it was
significantly decreased by the non-selective COX inhibitor (indometha-
cin) or the selective COX-2 inhibitor (NS-398) while in non-diabetic
group it was not modified. This effect was accompanied with increased
expression of COX-2 in coronary arterioles of diabetic patients [27] and
probably involved the greater production of PGI2 as frequently reported
when the COX-2 enzyme was induced in isolated human vessels
[28,29].

Contradictory results have been described with hypoxia whereby it
induces either vasoconstriction or vasodilatation of human coronary
arteries depending on their initial muscular tone and/or the in vitro
model used [30,31]. However, the involvement of prostanoids in
hypoxia has been linked to a contractile role. The vasoconstriction of
isolated monkey or human coronary artery induced by hypoxia was
associated with vasoconstrictor prostanoids released from subendothe-
lial tissues [31]. In accordance with this effect of endogenous prosta-
noids, indomethacin enhanced dilatation of human coronary arterioles
under hypoxia [30].

N-formyl oligopeptides produced by tissue bacterial infection are
responsible for macrophage or neutrophil activations. One synthetic
mimetic of these peptides, the chemotactic peptide N-formyl-L-methio-
nyl-L-leucyl-L-phenylalanine (FMLP), is responsible for biphasic re-
sponse of the vascular tone in isolated human coronary artery
[12,32]. The contraction and relaxation induced by FMLP were mainly
due to the generation of TxA2 and PGI2, respectively. They were
endothelium-independent and completely abolished in the presence of
the COX inhibitors aspirin or indomethacin [12,32].

Pharmacological studies on the effects of prostanoid mimetics
(U46619, carbocyclic TxA2; PGI2 and iloprost) have suggested that
the prostanoid receptors involved in vascular responses are the TP and
the IP receptor respectively [13,33–36]. However, other prostanoids
could be involved since stimulation of human coronary artery prepara-
tions with FMLP resulted in a marked production of PGF2α, a smaller
production of PGD2 and a slight increase of TxB2. All these prostanoids
constricted coronary artery in vitro, but the stable TxA2 mimetic
U46619 was 100 times more potent than PGE2, PGF2α or PGD2

[12,32,37]. These results also suggest that EP3, EP1 and/or FP
receptors could be expressed and control the human coronary muscular
tone. It is not excluded that PGE2 could also act on EP2/EP4 receptor
subtypes since one report has shown that PGE2 stimulated large-
conductance calcium-activated-K+ channel (BKCa) activity in HCASMC
via enhanced production of cyclic adenosine monophosphate (cAMP).
This potassium channel activation leads to membrane repolarisation

G. Ozen, X. Norel Prostaglandins and Other Lipid Mediators xxx (xxxx) xxx–xxx

2



[38]. However, the dominant effect of PGE2 is the vasoconstriction in
human coronary artery [12].

In addition to the direct in vitro effect of prostanoids on vascular
tone, they could have synergistic effect with other vasoactive sub-
stances. For example, several studies have shown that endogenous TxA2

could enhance vascular contractile responses to both 5-HT (5-hydro-
xytryptamine) and also 5-HT1 like receptor agonist sumatriptan in the
human isolated coronary artery [13,36,39]. This synergistic action of 5-
HT and TxA2 could easily occur and have implications in CAD, since
both platelet-derived and locally produced TxA2 by vascular wall could
increase contraction responses induced by 5-HT [13].

3.2. Regulation of vascular tone by prostanoids in vivo

The effects of prostanoids on coronary hemodynamic parameters
were studied either after intracoronary or systemic [oral or intravenous
(iv)] administration of prostanoids or prostanoid synthase inhibitors.
Administration of PGI2 (iv infusion) in patients with CAD has resulted
in a decrease of coronary vascular resistance [40–42]. A similar effect
was obtained in patients with CAD after TxAS inhibitor (intracoronary
administration) or nisoldipine (calcium channel blocker, oral adminis-
tration), due to a decrease of TxA2 levels in coronary sinus in both cases
[43,44].

In patients without CAD, administration of COX inhibitors such as
ibuprofen (oral), ketoprofen (iv) or aspirin (iv) did not induce any
differences in coronary hemodynamics [45,46] (Table 1). However,
when cold pressure tests (sympathetic stimulation) were applied to
these patients, increased coronary blood flow and decreased coronary
vascular resistance were observed. In addition, an increase of PGI2 and
PGE2 productions was detected in blood samples obtained from the
coronary sinus and the aorta. Administration of ketoprofen or aspirin
after cold pressure test inhibited these prostanoid releases and caused
an increase in coronary vascular resistance [46].

In humans with CAD, iv or oral administration of indomethacin
decreased coronary blood flow or increased coronary vascular resis-
tance, demonstrating a vasodilator role for prostanoids [47–51]
(Table 1). This is in accordance with another study where aspirin was

administered intracoronary and suggesting also that endogenous pros-
tanoids strongly contributed to metabolic dilatation in patients with
atherosclerosis or coronary risk factors [51]. On the other hand, one
study has demonstrated that oral administration of aspirin did not
modify coronary blood flow in patients with CAD despite the fact that
TxA2 levels were significantly decreased. However, PGI2 metabolites
were not measured in this study [52].

Overall, most of in vivo studies have demonstrated that COX
inhibitors have no effect on basal coronary vascular tone in healthy
patients. However, when the prostanoids release were increased either
with cold pressure test [46] or as in patients with CAD [53–55], then in
this condition, COX inhibitors especially indomethacin could increase
vascular resistance and blood pressure in coronary vessels (Table 1).
These results suggest that in CAD patients, the in vivo control of
coronary vascular tone by PGI2 is dominant in comparison to TxA2.

3.3. Regulation of remodelling and angiogenesis by prostanoids in vitro

Prostanoids play notable roles in the development or progression of
atherosclerosis especially in the coronary artery [4]. Vascular remodel-
ling observed in atherosclerosis involves the changes in extracellular
matrix (ECM) components such as collagen, elastin or fibronectin.
These ECM components could be degraded by a family of zinc-
dependent matrix metalloproteinase (MMP) endopeptidases. It has
been shown that activation of the TP receptor by a selective agonist
was responsible for the induction of procollagen I mRNA expression and
proliferation of HCASMCs. These effects were blocked by a TP receptor
antagonist or COX-1 inhibitor [11,56]. Furthermore, PGE2 could
directly increase mRNA and protein levels of MMP-10, which is
responsible for ECM proteins and proteoglycans degradations in HCAEC
[57].

Angiogenesis, the formation of new blood capillaries, is of crucial
importance for the pathophysiology of several diseases, including
myocardial ischemia to increase collateral blood flow. The growth of
new vessels is strongly regulated by angiogenic factors. Vascular
endothelial growth factor (VEGF) is one of the key regulators of
angiogenesis and promotes most of the critical steps in this process

Table 1
Effects of COX inhibitors on human coronary hemodynamics.

COX inhibitor Patient characteristic Technique Results Ref

Indomethacin, iv CAD Without any stimulation CVR increased
CBF decreased

[47]

Indomethacin,oral CAD Same effects of indomethacin were observed in rest, atrial
pacing or recovery period

CVR increased [49]

Indomethacin, oral CAD Significant effect of indomethacin was observed after
atrial pacing not in rest

CVR increased slightly CBF didn’t change [50]

Indomethacin, iv CAD Without any stimulation CVR increased
CBF decreased
Inhibition of TxB2 in CS

[48]

Aspirin, intracoronary Atherosclerosis
or coronary risk factors

More pronounced effects of aspirin were observed after
ventricular pacing

CVR increased
CBF decreased

[51]

Aspirin, oral CAD Same effects of aspirin were observed in rest and
coronary sinus pacing

CBF didn’t change
Inhibition TxB2 in CS

[52]

Aspirin, naproxen or ibuprofen, oral CAD Same effects of these drugs were observed in rest, atrial
pacing or recovery period

CVR didn’t change [49]

Aspirin, ketoprofen, iv Patients without CAD Without any stimulation CVR and CBF didn’t change [46]

Aspirin, ketoprofen, iv Patients without CAD CPT induced sympathetic stimulation CVR increased
Inhibition of PGE2 and
6-keto-PGF1α

[46]

Ibuprofen, oral Healthy man Same effects of ibuprofen were observed in rest, during
exercise or recovery period

CBF and CVR didn’t change, inhibition of
urinary excretion of PGI-M

[45]

CPT: cold pressure test, CAD: coronary artery disease, CBF: coronary blood flow, CS: coronary sinus, CVR: coronary vascular resistance, iv: intravenous, PG: prostaglandin, PGI-M:
Prostacyclin metabolite, TxB2: thromboxane B2.
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[58]. The effects of prostanoids in angiogenesis regarding VEGF levels
have been investigated in cultured HCASMC. Addition of PGE1 or ONO
1301 (PGI2 receptor agonist and TxA2 synthase inhibitor) to HCASMC
resulted in a significant increase in VEGF production [59,60]. This pro-
angiogenic effect of PGI2 in HCASMC is paradoxical since it has been
reported that PGI2 analogues inhibited SMC proliferation in human
aortic or pulmonary smooth muscle cells [61–63].

Prostanoids could be also involved in adhesion-migration process in
HCAEC, since PGE2 induced the expression of activated β1-integrin
mainly via EP2 receptor activation [18]. The increased expression of
β1-integrin is implicated in the vascular remodelling by promoting of
migration and regulating matrix synthesis. On the other hand, TP
agonists like TxA2-mimetic (U46619) and isoprostanes (8-iso-PGF2α, 8-
iso-PGA2) could inhibit migration induced by VEGF as well as tube
formation of HCAEC [64]. That is in coherence with previous study on
HUVEC migration induced by VEGF, where activation of TPα and TPβ
isoforms resulted in the anti-angiogenic effect [65].

Taken together, IP receptor agonists could be protective for CAD by
promoting angiogenesis, while activation of TP receptor results in
exacerbation of this disease by inhibiting angiogenesis and promoting
SMC proliferation.

4. Prostanoids in coronary artery disease

Alterations of prostanoid productions and their synthase enzymes in
CAD or related conditions are summarised in Table 2. In vitro expression
of COX-2 has been detected in smooth muscle and endothelial cells of
atherosclerotic human coronary artery [66,67]. In addition, during
myocardial ischemia, COX-2 mRNA and protein expressions have
increased while COX-1 and PGIS levels remain unchanged in human

coronary arterioles [68]. Similar results have been obtained by in vivo
studies showing that the excretion or plasma levels of 2,3-dinor-6-keto-
PGF1α (a major urinary PGI2 metabolite), TxB2 (stable metabolite of
TxA2) or PGE2 were significantly higher in patients with severe
atherosclerosis than in healthy volunteers [53–55]. However, one
PGI2 stimulating factor has been reported to be decreased in vitro in
CASMC of patients with myocardial infarction but the effect of this
factor on PGI2 production was not investigated in these cells [69]. The
expression of prostanoid receptors could be also modified in CAD. As an
example of in vitro study, in acute myocardial infarction an increased
number of TxA2/PGF2α receptors and a reduced number of PGI2
receptors have been determined [70,71].

Both in vitro and in vivo studies showed that during CABG surgery,
vasomotor dysfunction of human coronary artery has been observed
after cardioplegia followed by reperfusion [72–74]. A decreased
contractile response induced by TxA2 mimetics has been reported in
human coronary arterioles after cardioplegia/reperfusion in vitro [16].
However, during this period, no change in the TP receptor expression
has been detected while TxA2 release in coronary circulation and COX-2
expression in coronary artery have increased [16,68]. Increased PGI2
release after induction of COX-2 expression might be involved in the
decreased contractile response induced by TxA2 mimetic after cardio-
plegia/reperfusion; however, it needs to be evaluated.

4.1. In vivo effect of aspirin and COX-2 inhibitors, clinical aspect on
coronary artery diseases

CABG surgery involves the use of blood vessels [such as internal
mammary artery (IMA), radial artery (RA) or saphenous vein (SV)]
taken from another part of body to bypass narrowed or blocked

Table 2
Prostanoids in coronary artery disease or related conditions in humans.

Preparation Pathology Prostanoids/enzyme Results Technique Ref

Coronary artery Atherosclerosis TP receptor + AR [71]

Epicardial coronary artery Atherosclerosis COX-2 + ICC [66]

Coronary artery Atherosclerosis COX-2 + IF [67]

Coronary artery Stable angina L-PGDS + IHC [136]

Coronary atrial appendages CP-Rep COX-2
COX-1
PGIS

+
=
=

RT-PCR
WB

[68]

Coronary arterioles CP-Rep TP receptor
TxAS

=
=

IB, IF [16]

HCASMC MI PSF - IS [69]

Plasma Atherosclerosis TxB2/6-keto PGF1α
TxB2

PGF2α
PGE2

+
+
=
+

RIA [55]

Plasma CPB TxB2

PGE2
PGI2

+
+
+

EIA [137–140]

Serum PTCA L-PGDS - [141]

Blood Unstable angina TxB2

6-keto-PGF1α
PGE2

+
=
=

[142]

Platelets Angina pectoris TxA2 + RIA [143]

Urines Atherosclerosis 2,3-dinor-6-keto-PGF1α + [53]

Urines IHD 11- dehydro TxB2

2,3-dinor-6-keto-PGF1α
=
+

RIA [144]

‘+’ indicates increase, ‘-’ indicates decrease, ‘=’ indicates no change of relative prostanoids, prostanoid receptor or enzyme. AR: Autoradiography, COX: cyclooxygenase, CPB:
Cardiopulmonary bypass, CP-Rep: Cardioplegia-reperfusion, HCASMC: human coronary artery smooth muscle cell, IB: Immunoblot, ICC: Immunocytochemistry, IF: Immunofluorescence,
IHC: Immunohistochemistry, IHD: Ischemic heart disease, IS: Immunostaining, EIA: Enzyme immunoassay, L-PGDS: lipocalin type prostaglandin D synthase, MI: Myocardial infarction,
PG: prostaglandin, PSF: prostacyclin stimulating factor, PTCA: Percutaneous transluminal coronary angioplasty, RIA: Radioimmunoassay, TxA2: thromboxane A2, WB: Western Blot.
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coronary artery. In patients undergoing CABG surgery, graft patency is
the most important indicator of the short and long-term success of the
operation. The administration of aspirin in pre-operative or post-
operative period has been shown to improve vein graft patency and
decrease mortality or ischemic complications without increasing the
risk of bleeding [6,75–78]. The meta-analysis studies have showed that
325 mg/day aspirin optimally improved vein graft survival and mor-
tality and did not cause an increase in complications compared to lower
doses [79]. On the other hand arterial grafts (IMA or RA), which have
already higher patency rate, were not significantly affected by post-
operative aspirin treatment [80–82]. Beneficial effect of aspirin mostly
observed in venous grafts could be related with anti-thrombotic effect
of aspirin by inhibiting the release of TxA2, a potent mediator of platelet
aggregation [83]. Although aspirin can also inhibit the synthesis of PGI2
which has anti-thrombotic effect [84–90] more pronounced inhibition
of TxA2-M (TxA2 metabolite) versus PGI‐M in humans have been
detected after low-dose aspirin [87,88,90].

Platelets are the major source of TxA2, while PGI2 is produced by
endothelial and smooth muscle cells. After low-dose aspirin treatment,
since there is no nucleus in platelet, once COX enzyme has been
acetylated by aspirin in an irreversible way, platelets are unable to
synthesize new COX mRNA. Thus, the formation of TxA2 requires the
synthesis of new platelets [91]. In contrast, nucleated cells such as
endothelium or smooth muscle could recover COX activity after aspirin
treatment by synthesizing new enzyme and production of PGI2 could
increase again [92]. These studies suggested that administration of
aspirin after or before CABG surgery has beneficial effect by increasing
PGI2/TxA2 ratio.

It is the reverse in treatments of rheumatoid arthritis with COX-2
inhibitors (COXIB) or NSAIDs by decreasing the PGI2/TxA2 ratio and
promoting cardiovascular side effects. These inhibitors were found to
decrease production of PGI2, as measured by its urinary metabolite 2,3-
dinor-6-keto PGF1α in humans [93,94]. Inhibition of PGI2 by COX-2
inhibitors, without the concomitant inhibition of COX-1 derived TxA2

would induce myocardial infarction by obstructing coronary vessels
[7,95]. In addition to selective COX-2 inhibitors, other NSAIDs such as
diclofenac, indomethacin had moderately elevated cardiovascular risks
[7].

Overall, the prostaglandins especially PGI2 and TxA2 seem to be key
elements in the coronary physiology as clinically demonstrated by the
beneficial effect of low dose of aspirin after CABG surgery or the
detrimental effects of COX-2 inhibitors. This differential effect of aspirin
and COX-2 inhibitors could be associated with their reverse effects on
the PGI2/TxA2 ratio.

4.2. Sex hormones and coronary artery disease, link with prostanoids

Epidemiological data have demonstrated that the incidence of
cardiovascular disease in women prior to menopause is lower than in
men. Administration of estrogen (especially 17β-estradiol) closer to
menopause is associated with a reduced incidence of CAD [96]. On the
other side, low serum testosterone levels have been detected in men
with CAD [97]. These beneficial effects of sex hormones might be
related to their effects on regulation of coronary artery vascular tone by
activation of their specific receptors in interaction with the prostanoids
pathway [98–100].

In vitro studies described that estrogen receptor (ER)β is the
predominant ER in human coronary arteries and suggested that
increased ERβ expression may be associated with severe atherosclerosis
and could be involved in compensatory mechanism [101]. On the other
hand, activation of ERα (not ERβ) in HUVEC [102] and in mice aorta
SMC increased PGI2 production [103]. Similarly, HCAEC or HUVEC
stimulated with 17β-estradiol increased PGI2 production [104,105]. In
accordance with these studies, in postmenopausal women, acute
17β−estradiol administration enhanced the endothelium-dependent
vasodilation induced by acethylcholine which involved PGI2 [106,107].

In addition, chronic administration of 17β-estradiol resulted in en-
hanced COX-1 and PGIS expressions in rats [108]. Moreover, 17β-
estradiol augmented the expression of PGI2 receptor gene (IP) in human
endothelial cells [109]. This regulation of IP expression in response to
estrogen occurred through “estrogen-ERα-estrogen response element”
mechanism [110] and may provide an explanation, at least in part, for
protective roles of estrogen against CAD [98,99]. However, depending
on species studied, 17β-estradiol could have differential effects on
prostanoid release in coronary artery [111–115]. Several in vitro studies
have shown that 17β-estradiol could be also responsible for relaxation
in coronary arteries derived from different female species while this
effect was independent from COX pathway [116–118].

Testosterone like estrogen has in vivo or in vitro vasodilatory effects
by inhibition of L-calcium channel and activation of potassium channel
on several vascular beds including coronary artery derived from
different species (rat, porcine, canine, sheep or rabbit)
[115,119–125]. Similarly, in vivo studies, acute or chronic administra-
tion of male sex hormones testosterone has increased coronary artery
diameter and flow [119,126]. The mechanism underlying the vasodi-
lator effects of testosterone could be due to prostanoids since testoster-
one administration significantly decreased TxA2 and increased PGI2
levels in elderly men with coronary heart disease [100]. Supporting this
idea, several studies have shown that dihydrotestosterone increased
COX-2 expression in vitro in HCASMC and rat periovulatory granulosa
cells [10,127]. In accordance with this study, testosterone increased
vasodilatory response in diabetic rabbits versus control animals due to
increased COX-2 derived PGI2 synthesis [128]. In addition, dihydrotes-
tosterone can upregulate PGI2 receptor (IP) expression through andro-
gen receptor dependent mechanism in human cells [129].

Taken together, vascular regulation of human coronary artery either
in vivo or in vitro is strongly influenced by estrogen or testosterone.
While several evidences have suggested that prostanoids especially
PGI2 is involved in cardioprotective effects of sex hormones, more
studies performed in human coronary artery are needed to elucidate
their specific contributions.

5. Conclusions

The mechanism underlying coronary artery diseases is dependent on
the interactions between blood cells and coronary artery vascular wall.
The roles of prostanoids on platelet aggregation/thrombosis and
consequently their involvements in CAD are widely documented in
literature. However, there is limited data concerning the effects of
prostanoids on the coronary artery vascular wall and most of them were
derived from animal studies. The studies performed in human coronary
artery preparations focused on the effects of PGI2 and TxA2. They show
that PGI2 has beneficial effects by inducing vasodilatation and promot-
ing angiogenesis while TxA2 has reverse effects (Fig. 1). In contrast to
other human vessels, there is few in vitro data in literature concerning
roles of other prostanoids such as PGE2, PGD2 or PGF2α in human
coronary artery. However, recent studies have suggested that serum
levels of L-PGDS (Lipocalin-type prostaglandin D synthase) could be a
biomarker for severity of CAD [130–132]. In addition to L-PGDS, the
studies performed in animals suggested that inhibition of EP3 receptor
or mPGES-1 enzyme could represent promising therapeutic targets in
the treatment of CAD [133].

While clinical studies with aspirin or COX-2 inhibitors have shown
strong involvements of prostanoids in coronary artery physiology, more
fundamental studies are needed to evaluate the exact effects and
mechanisms of prostanoids on human coronary vasculature. Together
with their effects on blood cells, interactions between perivascular
adipose tissue surrounding coronary artery and vascular wall should be
also evaluated since it has been shown that adipose tissue is a source of
prostanoids in humans [134,135].
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